Compact Bat Algorithm with Deep Learning Model for Biomedical EEG EyeState Classification
نویسندگان
چکیده
Electroencephalography (EEG) eye state classification becomes an essential tool to identify the cognitive of humans. It can be used in several fields such as motor imagery recognition, drug effect detection, emotion categorization, seizure etc. With latest advances deep learning (DL) models, it is possible design accurate and prompt EEG EyeState problem. In this view, study presents a novel compact bat algorithm with model for biomedical (CBADL-BEESC) model. The major intention CBADL-BEESC technique aims categorize presence EyeState. performs feature extraction using ALexNet which helps produce useful vectors. addition, extreme machine autoencoder (ELM-AE) applied classify signals parameter tuning ELM-AE performed CBA. experimental result analysis carried out on benchmark results comparative outcome reported supremacy over recent methods.
منابع مشابه
Melanoma detection with a deep learning model
Background: Skin cancer is one of the most common forms of cancer in the world and melanoma is the deadliest type of skin cancer. Both melanoma and melanocytic nevi begin in melanocytes (cells that produce melanin). However, melanocytic nevi are benign whereas melanoma is malignant. This work proposes a deep learning model for classification of these two lesions. Methods: In this analytic s...
متن کاملEnsemble Deep Learning for Biomedical Time Series Classification
Ensemble learning has been proved to improve the generalization ability effectively in both theory and practice. In this paper, we briefly outline the current status of research on it first. Then, a new deep neural network-based ensemble method that integrates filtering views, local views, distorted views, explicit training, implicit training, subview prediction, and Simple Average is proposed ...
متن کاملA Hybrid Optimization Algorithm for Learning Deep Models
Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...
متن کاملBat detective—Deep learning tools for bat acoustic signal detection
Passive acoustic sensing has emerged as a powerful tool for quantifying anthropogenic impacts on biodiversity, especially for echolocating bat species. To better assess bat population trends there is a critical need for accurate, reliable, and open source tools that allow the detection and classification of bat calls in large collections of audio recordings. The majority of existing tools are c...
متن کاملA Hybrid Optimization Algorithm for Learning Deep Models
Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers, materials & continua
سال: 2022
ISSN: ['1546-2218', '1546-2226']
DOI: https://doi.org/10.32604/cmc.2022.027922